Model Context Protocol (MCP) finally gives AI models a way to access the business data needed to make them really useful at work. CData MCP Servers have the depth and performance to make sure AI has access to all of the answers.
Try them now for free →Use Dash to Build to Web Apps on Salesloft Data
Create Python applications that use pandas and Dash to build Salesloft-connected web apps.
The rich ecosystem of Python modules lets you get to work quickly and integrate your systems more effectively. With the CData Python Connector for Salesloft, the pandas module, and the Dash framework, you can build Salesloft-connected web applications for Salesloft data. This article shows how to connect to Salesloft with the CData Connector and use pandas and Dash to build a simple web app for visualizing Salesloft data.
With built-in, optimized data processing, the CData Python Connector offers unmatched performance for interacting with live Salesloft data in Python. When you issue complex SQL queries from Salesloft, the driver pushes supported SQL operations, like filters and aggregations, directly to Salesloft and utilizes the embedded SQL engine to process unsupported operations client-side (often SQL functions and JOIN operations).
Connecting to Salesloft Data
Connecting to Salesloft data looks just like connecting to any relational data source. Create a connection string using the required connection properties. For this article, you will pass the connection string as a parameter to the create_engine function.
SalesLoft authenticates using the OAuth authentication standard or an API Key. OAuth requires the authenticating user to interact with SalesLoft using the browser.Using OAuth
For OAuth authentication, create an OAuth app to obtain the OAuthClientId, OAuthClientSecret, and CallbackURL connection properties. See the OAuth section in the Help documentation for an authentication guide.Using APIKey
Alternatively, you can authenticate with an APIKey. Provision an API key from the SalesLoft user interface: https://accounts.salesloft.com/oauth/applications/. You will receive a Key which will be used when issuing requests.
After installing the CData Salesloft Connector, follow the procedure below to install the other required modules and start accessing Salesloft through Python objects.
Install Required Modules
Use the pip utility to install the required modules and frameworks:
pip install pandas pip install dash pip install dash-daq
Visualize Salesloft Data in Python
Once the required modules and frameworks are installed, we are ready to build our web app. Code snippets follow, but the full source code is available at the end of the article.
First, be sure to import the modules (including the CData Connector) with the following:
import os import dash import dash_core_components as dcc import dash_html_components as html import pandas as pd import cdata.salesloft as mod import plotly.graph_objs as go
You can now connect with a connection string. Use the connect function for the CData Salesloft Connector to create a connection for working with Salesloft data.
cnxn = mod.connect("AuthScheme=OAuth;OAuthClientId=MyOAuthClientId;OAuthClientSecret=MyOAuthClientSecret;CallbackUrl=http://localhost:33333;InitiateOAuth=GETANDREFRESH;OAuthSettingsLocation=/PATH/TO/OAuthSettings.txt")")
Execute SQL to Salesloft
Use the read_sql function from pandas to execute any SQL statement and store the result set in a DataFrame.
df = pd.read_sql("SELECT Id, Name FROM Accounts WHERE Country = 'Canada'", cnxn)
Configure the Web App
With the query results stored in a DataFrame, we can begin configuring the web app, assigning a name, stylesheet, and title.
app_name = 'dash-salesloftedataplot' external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) app.title = 'CData + Dash'
Configure the Layout
The next step is to create a bar graph based on our Salesloft data and configure the app layout.
trace = go.Bar(x=df.Id, y=df.Name, name='Id') app.layout = html.Div(children=[html.H1("CData Extension + Dash", style={'textAlign': 'center'}), dcc.Graph( id='example-graph', figure={ 'data': [trace], 'layout': go.Layout(title='Salesloft Accounts Data', barmode='stack') }) ], className="container")
Set the App to Run
With the connection, app, and layout configured, we are ready to run the app. The last lines of Python code follow.
if __name__ == '__main__': app.run_server(debug=True)
Now, use Python to run the web app and a browser to view the Salesloft data.
python salesloft-dash.py

Free Trial & More Information
Download a free, 30-day trial of the CData Python Connector for Salesloft to start building Python apps with connectivity to Salesloft data. Reach out to our Support Team if you have any questions.
Full Source Code
import os import dash import dash_core_components as dcc import dash_html_components as html import pandas as pd import cdata.salesloft as mod import plotly.graph_objs as go cnxn = mod.connect("AuthScheme=OAuth;OAuthClientId=MyOAuthClientId;OAuthClientSecret=MyOAuthClientSecret;CallbackUrl=http://localhost:33333;InitiateOAuth=GETANDREFRESH;OAuthSettingsLocation=/PATH/TO/OAuthSettings.txt") df = pd.read_sql("SELECT Id, Name FROM Accounts WHERE Country = 'Canada'", cnxn) app_name = 'dash-salesloftdataplot' external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) app.title = 'CData + Dash' trace = go.Bar(x=df.Id, y=df.Name, name='Id') app.layout = html.Div(children=[html.H1("CData Extension + Dash", style={'textAlign': 'center'}), dcc.Graph( id='example-graph', figure={ 'data': [trace], 'layout': go.Layout(title='Salesloft Accounts Data', barmode='stack') }) ], className="container") if __name__ == '__main__': app.run_server(debug=True)