各製品の資料を入手。
詳細はこちら →AWS Glue ジョブからDB2 のデータにJDBC 経由で接続
Amazon S3 でホストされているCData JDBC ドライバーを使用してAWS Glue ジョブからDB2 にデータ連携。
最終更新日:2023-09-07
この記事で実現できるDB2 連携のシナリオ
こんにちは!ウェブ担当の加藤です。マーケ関連のデータ分析や整備もやっています。
AWS Glue はAmazon のETL サービスであり、簡単にデータプレパレーションを実行してストレージおよび分析用に読み込むことができます。AWS Glue と一緒にPySpark モジュールを使用すると、JDBC 接続経由でデータを処理するジョブを作成し、そのデータをAWS データストアに直接読み込むことができます。ここでは、CData JDBC Driver for DB2 をAmazon S3 バケットにアップロードし、DB2 からデータを抽出してCSV ファイルとしてS3 に保存するためのAWS Glue ジョブを作成・実行する方法について説明します。
CData JDBC Driver for DB2 をAmazon S3 バケットにアップロード
CData JDBC Driver for DB2 をAWS Glue から使用するには、ドライバーの.jar ファイル(および必要なライセンスファイル)をAmazon S3 のバケットに配置する必要があります。
- Amazon S3 コンソールを開きます。
- バケットを選択、もしくは作成します。
- [アップロード]をクリックします。
- JDBC Driver の.jar ファイル(cdata.jdbc.db2.jar) をインストールディレクトリのlib フォルダから選択してアップロードします。
Amazon Glue Job を設定
- [分析]->[AWS Glue]をクリックします。
- AWS Glue コンソールで、[ETL]->[ジョブ]をクリックします。
- [ジョブの追加]をクリックして新しいGlue ジョブを作成します。
- ジョブのプロパティを設定します:
- 名前: DB2GlueJob など任意のジョブ名
- IAM ロール: AWSGlueServiceRole もしくは AmazonS3FullAccessSelect の権限があるIAM ロールを設定(JDBC Driver がAmazon S3 バケットにあるため)。
- Type: [Spark]を選択。
- Glue version: ドロップダウンからバージョンを選択。
- このジョブ実行: [ユーザーが作成する新しいスクリプト]を選択。
スクリプトプロパティの設定: - スクリプトファイル名: GlueDB2JDBC などのスクリプトファイル名。
- スクリプトが保存されているS3 パス: S3 バケットを入力もしくは選択。
- 一時ディレクトリ: S3 バケットを入力もしくは選択
- ETL 言語: [Python]を選択
- セキュリティ設定、スクリプトライブラリおよびジョブパラメータを展開。依存JARS パスは、JDBC の.jar ファイルをアップロードしたS3 バケットに設定。.jar ファイル名 s3://mybucket/cdata.jdbc.db2.jar も含めます。
- [次へ]をクリックすると、ほかのAWS エンドポイントへの接続オプション追加ができます。Redshift、MySQL などに接続する際にはここで接続を作成できます。
- [ジョブの保存とスクリプトの編集]をクリックします。
- 開いたエディタで、Python スクリプトを記述します。サンプルは以下です。
サンプルGlue スクリプト
CData JDBC driver でDB2 に接続するには、JDBC URL を作成します。さらにライセンスとしてJDBC URL にRTK プロパティを設定する必要があります。RTK は通常のライセンスと異なりますので、CData まで直接ご連絡をください。
DB2 に接続するには以下のプロパティを設定します。
- Server: DB2 を実行するサーバー名。
- Port: DB2 サーバーのポート。
- Database: DB2 データベース名。
接続の準備ができたら、認証スキームを選択し、以下で説明するように適切なプロパティを設定します。
本製品 は、DB2 への認証に4つの異なるスキームをサポートします。DB2 ユーザー資格情報(デフォルト)、暗号化されたユーザー資格情報、IBM Identity and Access Management(IAM)認証、および Kerberos です。
DB2 ユーザー資格情報
ユーザー資格情報を使用して認証するには、次のプロパティを設定します。- AuthScheme:USRIDPWD。
- User:データベースへのアクセス権を持つユーザーのユーザー名。
- Password:データベースへのアクセス権を持つユーザーのパスワード。
暗号化されたユーザー資格情報
サーバーがセキュア認証に対応しており、暗号化されたユーザー資格情報を使用して認証を行いたい場合は、このプロパティを設定します。- AuthScheme:EUSRIDPWD
IAM、Kerberos で認証したい場合は、ヘルプドキュメントの「はじめに」セクションを参照してください。
パスワード方式によるSSH 接続
パスワード方式によるSSH接続時に必要なプロパティ一覧を以下に示します。
- User: DB2 のユーザ
- Password: DB2 のパスワード
- Database: DB2 の接続先データベース
- Server: DB2 のサーバー
- Port: DB2 のポート
- UserSSH: "true"
- SSHAuthMode: "Password"
- SSHPort: SSH のポート
- SSHServer: SSH サーバー
- SSHUser: SSH ユーザー
- SSHPassword: SSH パスワード
接続文字列形式では以下のようになります。
Server=10.0.1.2;Port=50000;User=admin;Password=admin;Database=testUseSSH=true;SSHAuthMode=Password;SSHPort=22;SSHServer=ssh-server;SSHUser=root;SSHPassword=sshpasswd;
公開鍵認証方式方式によるSSH 接続
公開鍵認証によるSSH接続時に必要なプロパティ一覧を以下に示します。
- User: DB2 のユーザ
- Password: DB2 のパスワード
- Database: DB2 の接続先データベース
- Server: DB2 のサーバー
- Port: DB2 のポート
- UserSSH: "true"
- SSHAuthMode: "Public_Key"
- SSHClientCertType: キーストアの種類
- SSHPort: SSH のポート
- SSHServer: SSH サーバー
- SSHUser: SSH ユーザー
- SSHClientCert: 秘密鍵ファイルのパス
接続文字列形式では以下のようになります。
Server=10.0.1.2;Port=50000;User=admin;Password=admin;Database=test;UseSSH=true;SSHAuthMode=Public_Key;SSHClientCertType=PUBLIC_KEY_FILE;SSHPort=22;SSHServer=ssh-server;SSHUser=root;SSHClientCert=C:\Keys\key.pem;
ビルトイン接続文字列デザイナー
JDBC URL の作成をサポートするビルトインの接続文字列デザイナーがあります。ドライバーの.jar ファイルをダブルクリックするか、コマンドラインで.jar ファイルを実行するとデザイナーが開きます。
java -jar cdata.jdbc.db2.jar
必要項目を入力すると、デザインs-下部に接続文字列が生成されますのでクリップボードにコピーして使います。

CData JDBC driver をPySpark で使用して、AWS Glue モジュールでDB2 のデータを取得して、S3 にCSV 形式で保存するシンプルなスクリプト例は以下です。
import sys
from awsglue.transforms import *
from awsglue.utils import getResolvedOptions
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.dynamicframe import DynamicFrame
from awsglue.job import Job
args = getResolvedOptions(sys.argv, ['JOB_NAME'])
sparkContext = SparkContext()
glueContext = GlueContext(sparkContext)
sparkSession = glueContext.spark_session
##Use the CData JDBC driver to read DB2 データ from the Orders table into a DataFrame
##Note the populated JDBC URL and driver class name
source_df = sparkSession.read.format("jdbc").option("url","jdbc:db2:RTK=5246...;Server=10.0.1.2;Port=50000;User=admin;Password=admin;Database=test;").option("dbtable","Orders").option("driver","cdata.jdbc.db2.DB2Driver").load()
glueJob = Job(glueContext)
glueJob.init(args['JOB_NAME'], args)
##Convert DataFrames to AWS Glue's DynamicFrames Object
dynamic_dframe = DynamicFrame.fromDF(source_df, glueContext, "dynamic_df")
##Write the DynamicFrame as a file in CSV format to a folder in an S3 bucket.
##It is possible to write to any Amazon data store (SQL Server, Redshift, etc) by using any previously defined connections.
retDatasink4 = glueContext.write_dynamic_frame.from_options(frame = dynamic_dframe, connection_type = "s3", connection_options = {"path": "s3://mybucket/outfiles"}, format = "csv", transformation_ctx = "datasink4")
glueJob.commit()
Glueジョブを実行する
スクリプト記述後、Glue ジョブを実行します。実行した取得/ロードのジョブが完了するとAWS Glue コンソールのジョブページでステータスが確認できます。成功するとS3 バケットにDB2 のデータのCSV ファイルが生成されています。
このようにCData JDBC Driver for DB2 をAWS Glue で使用することで、DB2 のデータをAWS Glue で自在に扱うことができます。Glue の外部データへの接続性を拡張するJDBC Driver を是非お試しください。