Python pandas を使ってMySQL のデータを可視化・分析する方法

CData Python Connector を使えば、Python でMySQL をpandas などのライブラリで呼び出してデータ分析や可視化を実行できます。

加藤龍彦
デジタルマーケティング

最終更新日:2023-09-23

この記事で実現できるMySQL 連携のシナリオ

こんにちは!ウェブ担当の加藤です。マーケ関連のデータ分析や整備もやっています。

Python エコシステムには多くのライブラリがあり、開発やデータ分析を行う際には必須と言っていいライブラリも多く存在します。CData Python Connector for MySQL は、pandas、Matplotlib、SQLAlchemy から使用することで MySQL にデータ連携するPython アプリケーションを構築したり、MySQL のデータの可視化を実現します。本記事では、pandas、SQLAlchemy、およびMatplotlib のビルトイン機能でMySQL にリアルタイムアクセスし、クエリを実行して結果を可視化する方法を説明します。

CData Python Connectors の特徴

CData Python Connectors は、以下のような特徴を持った製品です。

  1. MySQL をはじめとする、CRM、MA、会計ツールなど多様なカテゴリの270種類以上のSaaS / オンプレデータソースに対応
  2. pandas をはじめとする多様なデータ分析・BI ツールにMySQL のデータを連携
  3. ノーコードでの手軽な接続設定

CData Python Connectors では、1.データソースとしてMySQL の接続を設定、2.Python からPython Connectors との接続を設定、という2つのステップだけでデータソースに接続できます。以下に具体的な設定手順を説明します。

以下の手順に従い、必要なライブラリをインストールし、Python オブジェクト経由でMySQL にアクセスします。

必要なライブラリのインストール

pip で、pandas & Matplotlib ライブラリおよび、SQLAlchemy をインストールします。

pip install pandas
pip install matplotlib
pip install sqlalchemy

次にライブラリをインポートします。

import pandas
import matplotlib.pyplot as plt
from sqlalchemy import create_engine

Python でMySQL のデータを可視化

次は接続文字列を作成してMySQL に接続します。create_engine 関数を使って、MySQL に連携するEngne を作成します。以下はサンプルの接続文字列になりますので、環境に応じてクレデンシャル部分を変更してください。

engine = create_engine("mysql:///?User=myUser&Password=myPassword&Database=NorthWind&Server=myServer&Port=3306")

Server およびPort プロパティがMySQL への接続には必須です。IntegratedSecurity をFALSE に設定した場合、User、Password も必須になります。 オプションで、Database を設定することもできます。Database は設定がない場合すべてのデータベースを使えるようになります。

パスワード方式によるSSH 接続

パスワード方式によるSSH接続時に必要なプロパティ一覧を以下に示します。

  • User: MySQL のユーザ
  • Password: MySQL のパスワード
  • Database: MySQL の接続先データベース
  • Server: MySQL のサーバー
  • Port: MySQL のポート
  • UserSSH: "true"
  • SSHAuthMode: "Password"
  • SSHPort: SSH のポート
  • SSHServer: SSH サーバー
  • SSHUser: SSH ユーザー
  • SSHPassword: SSH パスワード

接続文字列形式では以下のようになります。

User=admin;Password=adminpassword;Database=test;Server=mysql-server;Port=3306;UseSSH=true;SSHAuthMode=Password;SSHPort=22;SSHServer=ssh-server;SSHUser=root;SSHPassword=sshpasswd;

公開鍵認証方式方式によるSSH 接続

公開鍵認証によるSSH接続時に必要なプロパティ一覧を以下に示します。

  • User: MySQL のユーザ
  • Password: MySQL のパスワード
  • Database: MySQL の接続先データベース
  • Server: MySQL のサーバー
  • Port: MySQL のポート
  • UserSSH: "true"
  • SSHAuthMode: "Public_Key"
  • SSHClientCertType: キーストアの種類
  • SSHPort: SSH のポート
  • SSHServer: SSH サーバー
  • SSHUser: SSH ユーザー
  • SSHClientCert: 秘密鍵ファイルのパス

接続文字列形式では以下のようになります。

User=admin;Password=adminpassword;Database=test;Server=mysql-server;Port=3306;UseSSH=true;SSHAuthMode=Public_Key;SSHClientCertType=PUBLIC_KEY_FILE;SSHPort=22;SSHServer=ssh-server;SSHUser=root;SSHClientCert=C:\Keys\key.pem;

MySQL にアクセスするSQL を実行

pandas のread_sql 関数を使って好きなSQL を発行して、DataFrame にデータを格納します。

df = pandas.read_sql("""SELECT ShipName, Freight FROM Orders WHERE ShipCountry = 'USA'""", engine)

MySQL のデータを可視化

DataFrame に格納されたクエリ結果に対して、plot 関数をつかって、MySQL のデータをグラフ化してみます。

df.plot(kind="bar", x="ShipName", y="Freight")
plt.show()
MySQL データ in a Python plot (Salesforce is shown).

MySQL からPython へのデータ連携には、ぜひCData Python Connector をご利用ください

このようにCData Python Connector と併用することで、270を超えるSaaS、NoSQL データをPython からコーディングなしで扱うことができます。30日の無償評価版が利用できますので、ぜひ自社で使っているクラウドサービスやNoSQL と合わせて活用してみてください。

日本のユーザー向けにCData Python Connector は、UI の日本語化、ドキュメントの日本語化、日本語でのテクニカルサポートを提供しています。



ソースコード

import pandas
import matplotlib.pyplot as plt
from sqlalchemy import create_engin

engine = create_engine("mysql:///?User=myUser&Password=myPassword&Database=NorthWind&Server=myServer&Port=3306")
df = pandas.read_sql("""SELECT ShipName, Freight FROM Orders WHERE ShipCountry = 'USA'""", engine)

df.plot(kind="bar", x="ShipName", y="Freight")
plt.show()

関連コンテンツ

トライアル・お問い合わせ

30日間無償トライアルで、CData のリアルタイムデータ連携をフルにお試しいただけます。記事や製品についてのご質問があればお気軽にお問い合わせください。