各製品の資料を入手。
詳細はこちら →Python pandas を使ってDatabricks のデータを可視化・分析する方法
CData Python Connector を使えば、Python でDatabricks をpandas などのライブラリで呼び出してデータ分析や可視化を実行できます。
最終更新日:2023-09-23
この記事で実現できるDatabricks 連携のシナリオ
こんにちは!ウェブ担当の加藤です。マーケ関連のデータ分析や整備もやっています。
Python エコシステムには多くのライブラリがあり、開発やデータ分析を行う際には必須と言っていいライブラリも多く存在します。CData Python Connector for Databricks は、pandas、Matplotlib、SQLAlchemy から使用することで Databricks にデータ連携するPython アプリケーションを構築したり、Databricks のデータの可視化を実現します。本記事では、pandas、SQLAlchemy、およびMatplotlib のビルトイン機能でDatabricks にリアルタイムアクセスし、クエリを実行して結果を可視化する方法を説明します。
CData Python Connectors の特徴
CData Python Connectors は、以下のような特徴を持った製品です。
- Databricks をはじめとする、CRM、MA、会計ツールなど多様なカテゴリの270種類以上のSaaS / オンプレデータソースに対応
- pandas をはじめとする多様なデータ分析・BI ツールにDatabricks のデータを連携
- ノーコードでの手軽な接続設定
CData Python Connectors では、1.データソースとしてDatabricks の接続を設定、2.Python からPython Connectors との接続を設定、という2つのステップだけでデータソースに接続できます。以下に具体的な設定手順を説明します。
以下の手順に従い、必要なライブラリをインストールし、Python オブジェクト経由でDatabricks にアクセスします。
必要なライブラリのインストール
pip で、pandas & Matplotlib ライブラリおよび、SQLAlchemy をインストールします。
pip install pandas pip install matplotlib pip install sqlalchemy
次にライブラリをインポートします。
import pandas import matplotlib.pyplot as plt from sqlalchemy import create_engine
Python でDatabricks のデータを可視化
次は接続文字列を作成してDatabricks に接続します。create_engine 関数を使って、Databricks に連携するEngne を作成します。以下はサンプルの接続文字列になりますので、環境に応じてクレデンシャル部分を変更してください。
engine = create_engine("databricks:///?Server=127.0.0.1&Port=443&TransportMode=HTTP&HTTPPath=MyHTTPPath&UseSSL=True&User=MyUser&Password=MyPassword")
Databricks 接続プロパティの取得・設定方法
Databricks クラスターに接続するには、以下のプロパティを設定します。
- Database:Databricks データベース名。
- Server:Databricks クラスターのサーバーのホスト名。
- HTTPPath:Databricks クラスターのHTTP パス。
- Token:個人用アクセストークン。この値は、Databricks インスタンスのユーザー設定ページに移動してアクセストークンタブを選択することで取得できます。
Databricks への認証
CData は、次の認証スキームをサポートしています。
- Basic
- 個人用アクセストークン
- Azure Active Directory(AD)
- Azure サービスプリンシパル
- OAuthU2M
- OAuthM2M
Basic
Basic 認証には、ユーザー名とパスワードが必要です。以下を設定します。
- AuthScheme:Basic。
- User:ユーザーネーム。これはデフォルト値("Token")をオーバーライドします。
- Token:パスワード。
その他の認証方法については、ヘルプドキュメント の「はじめに」セクションを参照してください。
Databricks にアクセスするSQL を実行
pandas のread_sql 関数を使って好きなSQL を発行して、DataFrame にデータを格納します。
df = pandas.read_sql("""SELECT City, CompanyName FROM Customers WHERE Country = 'US'""", engine)
Databricks のデータを可視化
DataFrame に格納されたクエリ結果に対して、plot 関数をつかって、Databricks のデータをグラフ化してみます。
df.plot(kind="bar", x="City", y="CompanyName") plt.show()

Databricks からPython へのデータ連携には、ぜひCData Python Connector をご利用ください
このようにCData Python Connector と併用することで、270を超えるSaaS、NoSQL データをPython からコーディングなしで扱うことができます。30日の無償評価版が利用できますので、ぜひ自社で使っているクラウドサービスやNoSQL と合わせて活用してみてください。
日本のユーザー向けにCData Python Connector は、UI の日本語化、ドキュメントの日本語化、日本語でのテクニカルサポートを提供しています。
ソースコード
import pandas import matplotlib.pyplot as plt from sqlalchemy import create_engin engine = create_engine("databricks:///?Server=127.0.0.1&Port=443&TransportMode=HTTP&HTTPPath=MyHTTPPath&UseSSL=True&User=MyUser&Password=MyPassword") df = pandas.read_sql("""SELECT City, CompanyName FROM Customers WHERE Country = 'US'""", engine) df.plot(kind="bar", x="City", y="CompanyName") plt.show()