各製品の資料を入手。
詳細はこちら →SQLAlchemy ORM を使って、Python でMySQL のデータに連携する方法
CData Python Connector を使って、Python アプリケーションおよびスクリプトからSQLAlchemy 経由でMySQL にOR マッピング可能に。
最終更新日:2023-09-23
この記事で実現できるMySQL 連携のシナリオ
こんにちは!ウェブ担当の加藤です。マーケ関連のデータ分析や整備もやっています。
Pythonエコシステムには、多くのモジュールがあり、システム構築を素早く効率的に行うことができます。CData Python Connector for MySQL は、pandas、Matplotlib モジュール、SQLAlchemy ツールキットから使用することで MySQL にデータ連携するPython アプリケーションを構築し、MySQL のデータを可視化できます。 本記事では、SQLAlchemy でMySQL に連携して、データを取得、、更新、挿入、削除 する方法を説明します。
CData Python Connectors の特徴
CData Python Connectors は、以下のような特徴を持った製品です。
- MySQL をはじめとする、CRM、MA、会計ツールなど多様なカテゴリの270種類以上のSaaS / オンプレデータソースに対応
- Python をはじめとする多様なデータ分析・BI ツールにMySQL のデータを連携
- ノーコードでの手軽な接続設定
CData Python Connectors では、1.データソースとしてMySQL の接続を設定、2.Python からPython Connectors との接続を設定、という2つのステップだけでデータソースに接続できます。以下に具体的な設定手順を説明します。
必要なモジュールのインストール
pip でSQLAlchemy ツールキットをインストールします:
pip install sqlalchemy
モジュールのインポートを忘れずに行います:
import sqlalchemy
Python でMySQL のデータをモデル化
次は、接続文字列で接続を確立します。create_engine 関数を使って、MySQL のデータに連携するEngne を作成します。
engine = create_engine("mysql///?User=myUser&Password=myPassword&Database=NorthWind&Server=myServer&Port=3306")
Server およびPort プロパティがMySQL への接続には必須です。IntegratedSecurity をFALSE に設定した場合、User、Password も必須になります。 オプションで、Database を設定することもできます。Database は設定がない場合すべてのデータベースを使えるようになります。
パスワード方式によるSSH 接続
パスワード方式によるSSH接続時に必要なプロパティ一覧を以下に示します。
- User: MySQL のユーザ
- Password: MySQL のパスワード
- Database: MySQL の接続先データベース
- Server: MySQL のサーバー
- Port: MySQL のポート
- UserSSH: "true"
- SSHAuthMode: "Password"
- SSHPort: SSH のポート
- SSHServer: SSH サーバー
- SSHUser: SSH ユーザー
- SSHPassword: SSH パスワード
接続文字列形式では以下のようになります。
User=admin;Password=adminpassword;Database=test;Server=mysql-server;Port=3306;UseSSH=true;SSHAuthMode=Password;SSHPort=22;SSHServer=ssh-server;SSHUser=root;SSHPassword=sshpasswd;
公開鍵認証方式方式によるSSH 接続
公開鍵認証によるSSH接続時に必要なプロパティ一覧を以下に示します。
- User: MySQL のユーザ
- Password: MySQL のパスワード
- Database: MySQL の接続先データベース
- Server: MySQL のサーバー
- Port: MySQL のポート
- UserSSH: "true"
- SSHAuthMode: "Public_Key"
- SSHClientCertType: キーストアの種類
- SSHPort: SSH のポート
- SSHServer: SSH サーバー
- SSHUser: SSH ユーザー
- SSHClientCert: 秘密鍵ファイルのパス
接続文字列形式では以下のようになります。
User=admin;Password=adminpassword;Database=test;Server=mysql-server;Port=3306;UseSSH=true;SSHAuthMode=Public_Key;SSHClientCertType=PUBLIC_KEY_FILE;SSHPort=22;SSHServer=ssh-server;SSHUser=root;SSHClientCert=C:\Keys\key.pem;
MySQL のデータのマッピングクラスの宣言
接続を確立したら、OR マッパーでモデル化するテーブルのマッピングクラスを宣言します。本記事では、Orders テーブルを使います。sqlalchemy.ext.declarative.declarative_base 関数を使って、新しいクラスにフィールド(カラム)を定義します。
base = declarative_base() class Orders(base): __tablename__ = "Orders" ShipName = Column(String,primary_key=True) Freight = Column(String) ...
MySQL のデータをクエリ
マッピングクラスができたので、セッションオブジェクトを使ってデータソースをクエリすることができます。セッションにEngine をバインドして、セッションのquery メソッドにマッピングクラスを提供します。
query メソッドを使う
engine = create_engine("mysql///?User=myUser&Password=myPassword&Database=NorthWind&Server=myServer&Port=3306") factory = sessionmaker(bind=engine) session = factory() for instance in session.query(Orders).filter_by(ShipCountry="USA"): print("ShipName: ", instance.ShipName) print("Freight: ", instance.Freight) print("---------")
ほかの方法としては、execute メソッドを適切なテーブルオブジェクトに使うことが可能です。以下のコードはアクティブなsession に対して有効です。
execute メソッドを使う
Orders_table = Orders.metadata.tables["Orders"] for instance in session.execute(Orders_table.select().where(Orders_table.c.ShipCountry == "USA")): print("ShipName: ", instance.ShipName) print("Freight: ", instance.Freight) print("---------")
より複雑なクエリとして、JOIN、集計、Limit などが利用可能です。詳細はヘルプドキュメントをご覧ください。
MySQL のデータの挿入(INSERT)
MySQL のデータへの挿入には、マップされたクラスのインスタンスを定義し、アクティブな session に追加します。commit 関数を呼び出して、MySQL にすべての追加インスタンスを送ります。
new_rec = Orders(ShipName="placeholder", ShipCountry="USA") session.add(new_rec) session.commit()
MySQL のデータを更新(UPDATE)
MySQL のデータの更新には、更新するレコードをフィルタクエリとともにフェッチします。そして、フィールドの値を変更し、セッションでcommit 関数を呼んで、MySQL にレコードを追加します。
updated_rec = session.query(Orders).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first() updated_rec.ShipCountry = "USA" session.commit()
MySQL のデータを削除(DELETE)
MySQL のデータの削除には、フィルタクエリと一緒に対象となるレコードをフェッチします。そして、アクティブsession でレコードを削除し、セッションでcommit 関数を呼び出して、該当するレコードの削除を実行します。
deleted_rec = session.query(Orders).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first() session.delete(deleted_rec) session.commit()
MySQL からPython へのデータ連携には、ぜひCData Python Connector をご利用ください
このようにCData Python Connector と併用することで、270を超えるSaaS、NoSQL データをPython からコーディングなしで扱うことができます。30日の無償評価版が利用できますので、ぜひ自社で使っているクラウドサービスやNoSQL と合わせて活用してみてください。
日本のユーザー向けにCData Python Connector は、UI の日本語化、ドキュメントの日本語化、日本語でのテクニカルサポートを提供しています。