各製品の資料を入手。
詳細はこちら →Python pandas を使ってXML のデータを可視化・分析する方法
CData Python Connector を使えば、Python でXML をpandas などのライブラリで呼び出してデータ分析や可視化を実行できます。
最終更新日:2023-09-23
この記事で実現できるXML 連携のシナリオ
こんにちは!ウェブ担当の加藤です。マーケ関連のデータ分析や整備もやっています。
Python エコシステムには多くのライブラリがあり、開発やデータ分析を行う際には必須と言っていいライブラリも多く存在します。CData Python Connector for XML は、pandas、Matplotlib、SQLAlchemy から使用することで XML にデータ連携するPython アプリケーションを構築したり、XML のデータの可視化を実現します。本記事では、pandas、SQLAlchemy、およびMatplotlib のビルトイン機能でXML にリアルタイムアクセスし、クエリを実行して結果を可視化する方法を説明します。
CData Python Connectors の特徴
CData Python Connectors は、以下のような特徴を持った製品です。
- XML をはじめとする、CRM、MA、会計ツールなど多様なカテゴリの270種類以上のSaaS / オンプレデータソースに対応
- pandas をはじめとする多様なデータ分析・BI ツールにXML のデータを連携
- ノーコードでの手軽な接続設定
CData Python Connectors では、1.データソースとしてXML の接続を設定、2.Python からPython Connectors との接続を設定、という2つのステップだけでデータソースに接続できます。以下に具体的な設定手順を説明します。
以下の手順に従い、必要なライブラリをインストールし、Python オブジェクト経由でXML にアクセスします。
必要なライブラリのインストール
pip で、pandas & Matplotlib ライブラリおよび、SQLAlchemy をインストールします。
pip install pandas pip install matplotlib pip install sqlalchemy
次にライブラリをインポートします。
import pandas import matplotlib.pyplot as plt from sqlalchemy import create_engine
Python でXML のデータを可視化
次は接続文字列を作成してXML に接続します。create_engine 関数を使って、XML に連携するEngne を作成します。以下はサンプルの接続文字列になりますので、環境に応じてクレデンシャル部分を変更してください。
engine = create_engine("xml:///?URI=C:/people.xml&DataModel=Relational")
データソースを認証するには、データプロバイダーのドキュメント内の「はじめに」セクションをご覧ください。 データプロバイダーはXML API を双方向データベーステーブルとしてモデル化し、XML ファイルをread-only ビュー(ローカルファイル、人気のクラウドサービスに格納されたファイル、およびFTP サーバー)としてモデル化します。 HTTP Basic、Digest、NTLM、OAuth、およびFTP を含む主な認証スキームはサポートされています。認証のガイドについては、データプロバイダーのドキュメント内の「はじめに」セクションをご覧ください。
URI と認証値を設定した後で、DataModel を設定することでデータの構造によりよくマッチするようデータの抽象化を調整できます。
DataModel プロパティはデータがどのようにテーブルとして抽象化されるかを制御するプロパティであり、次の基本的な設定を調整します。
- Document(デフォルト):XML データのトップレベルのドキュメントビューをモデル化します。データプロバイダーは入れ子化した要素をデータの集約値として返します。
- FlattenedDocuments:入れ子化したドキュメントとその親を結合して単一のテーブルに入力します。
- Relational:個別の関連テーブルを階層化されたデータから返します。テーブルは主キーと、親ドキュメントにリンクする外部キーを含みます。
リレーショナルな抽象化の設定についての詳細は、「XML データのモデリング」セクションを参照してください。次の例で使用されているサンプルデータも存在します。 このデータには、人名、その人たちが所有する車、車に施されたさまざまなメンテナンスに関する情報が含まれます。
XML にアクセスするSQL を実行
pandas のread_sql 関数を使って好きなSQL を発行して、DataFrame にデータを格納します。
df = pandas.read_sql("""SELECT [ personal.name.first ], [ personal.name.last ] FROM people WHERE [ personal.name.last ] = 'Roberts'""", engine)
XML のデータを可視化
DataFrame に格納されたクエリ結果に対して、plot 関数をつかって、XML のデータをグラフ化してみます。
df.plot(kind="bar", x="[ personal.name.first ]", y="[ personal.name.last ]") plt.show()

XML からPython へのデータ連携には、ぜひCData Python Connector をご利用ください
このようにCData Python Connector と併用することで、270を超えるSaaS、NoSQL データをPython からコーディングなしで扱うことができます。30日の無償評価版が利用できますので、ぜひ自社で使っているクラウドサービスやNoSQL と合わせて活用してみてください。
日本のユーザー向けにCData Python Connector は、UI の日本語化、ドキュメントの日本語化、日本語でのテクニカルサポートを提供しています。
ソースコード
import pandas import matplotlib.pyplot as plt from sqlalchemy import create_engin engine = create_engine("xml:///?URI=C:/people.xml&DataModel=Relational") df = pandas.read_sql("""SELECT [ personal.name.first ], [ personal.name.last ] FROM people WHERE [ personal.name.last ] = 'Roberts'""", engine) df.plot(kind="bar", x="[ personal.name.first ]", y="[ personal.name.last ]") plt.show()