各製品の資料を入手。
詳細はこちら →SQLAlchemy ORM を使って、Python でEnterpriseDB のデータに連携する方法
CData Python Connector を使って、Python アプリケーションおよびスクリプトからSQLAlchemy 経由でEnterpriseDB にOR マッピング可能に。
最終更新日:2023-09-23
この記事で実現できるEnterpriseDB 連携のシナリオ
こんにちは!ウェブ担当の加藤です。マーケ関連のデータ分析や整備もやっています。
Pythonエコシステムには、多くのモジュールがあり、システム構築を素早く効率的に行うことができます。CData Python Connector for EnterpriseDB は、pandas、Matplotlib モジュール、SQLAlchemy ツールキットから使用することで EnterpriseDB にデータ連携するPython アプリケーションを構築し、EnterpriseDB のデータを可視化できます。 本記事では、SQLAlchemy でEnterpriseDB に連携して、データを取得、、更新、挿入、削除 する方法を説明します。
CData Python Connectors の特徴
CData Python Connectors は、以下のような特徴を持った製品です。
- EnterpriseDB をはじめとする、CRM、MA、会計ツールなど多様なカテゴリの270種類以上のSaaS / オンプレデータソースに対応
- Python をはじめとする多様なデータ分析・BI ツールにEnterpriseDB のデータを連携
- ノーコードでの手軽な接続設定
CData Python Connectors では、1.データソースとしてEnterpriseDB の接続を設定、2.Python からPython Connectors との接続を設定、という2つのステップだけでデータソースに接続できます。以下に具体的な設定手順を説明します。
必要なモジュールのインストール
pip でSQLAlchemy ツールキットをインストールします:
pip install sqlalchemy
モジュールのインポートを忘れずに行います:
import sqlalchemy
Python でEnterpriseDB のデータをモデル化
次は、接続文字列で接続を確立します。create_engine 関数を使って、EnterpriseDB のデータに連携するEngne を作成します。
engine = create_engine("enterprisedb///?User=postgres&Password=admin&Database=postgres&Server=127.0.0.1&Port=5444")
データに接続するには、以下の接続プロパティが必要です。
- Server: EnterpriseDB データベースをホスティングしているサーバーのホスト名またはIP アドレス。
- Port: EnterpriseDB データベースをホスティングしているサーバーのポート。
オプションで、以下を設定することもできます。
- Database: EnterpriseDB サーバーに接続する場合のデフォルトのデータベース。設定されていない場合は、ユーザーのデフォルトデータベースが使用されます。
Basic 認証による接続
Basic 認証を使って認証するには、以下を設定します。
- User:EnterpriseDB サーバーに認証する際に使われるユーザー。
- Password:EnterpriseDB サーバーに認証する際に使われるパスワード。
SSL 認証による接続
SSL 認証を利用して、セキュアなセッションを介してEnterpriseDB データに接続できます。以下の接続プロパティを設定して、データに接続します。
- SSLClientCert:クライアント証明書のための証明書ストア名に設定します。クライアントとサーバーの両方のマシンでトラストストアとキーストアが保持される2-way SSL の場合に使用されます。
- SSLClientCertPassword:クライアント証明書ストアがパスワードで保護されている場合、この値をストアのパスワードに設定します。
- SSLClientCertSubject:TLS/SSL クライアント証明書のSubject。ストア内の証明書を検索するために使用されます。
- SSLClientCertType:クライアントストアの証明書タイプ。
- SSLServerCert:サーバーが受け入れ可能な証明書。
EnterpriseDB のデータのマッピングクラスの宣言
接続を確立したら、OR マッパーでモデル化するテーブルのマッピングクラスを宣言します。本記事では、Orders テーブルを使います。sqlalchemy.ext.declarative.declarative_base 関数を使って、新しいクラスにフィールド(カラム)を定義します。
base = declarative_base() class Orders(base): __tablename__ = "Orders" ShipName = Column(String,primary_key=True) ShipCity = Column(String) ...
EnterpriseDB のデータをクエリ
マッピングクラスができたので、セッションオブジェクトを使ってデータソースをクエリすることができます。セッションにEngine をバインドして、セッションのquery メソッドにマッピングクラスを提供します。
query メソッドを使う
engine = create_engine("enterprisedb///?User=postgres&Password=admin&Database=postgres&Server=127.0.0.1&Port=5444") factory = sessionmaker(bind=engine) session = factory() for instance in session.query(Orders).filter_by(ShipCountry="USA"): print("ShipName: ", instance.ShipName) print("ShipCity: ", instance.ShipCity) print("---------")
ほかの方法としては、execute メソッドを適切なテーブルオブジェクトに使うことが可能です。以下のコードはアクティブなsession に対して有効です。
execute メソッドを使う
Orders_table = Orders.metadata.tables["Orders"] for instance in session.execute(Orders_table.select().where(Orders_table.c.ShipCountry == "USA")): print("ShipName: ", instance.ShipName) print("ShipCity: ", instance.ShipCity) print("---------")
より複雑なクエリとして、JOIN、集計、Limit などが利用可能です。詳細はヘルプドキュメントをご覧ください。
EnterpriseDB のデータの挿入(INSERT)
EnterpriseDB のデータへの挿入には、マップされたクラスのインスタンスを定義し、アクティブな session に追加します。commit 関数を呼び出して、EnterpriseDB にすべての追加インスタンスを送ります。
new_rec = Orders(ShipName="placeholder", ShipCountry="USA") session.add(new_rec) session.commit()
EnterpriseDB のデータを更新(UPDATE)
EnterpriseDB のデータの更新には、更新するレコードをフィルタクエリとともにフェッチします。そして、フィールドの値を変更し、セッションでcommit 関数を呼んで、EnterpriseDB にレコードを追加します。
updated_rec = session.query(Orders).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first() updated_rec.ShipCountry = "USA" session.commit()
EnterpriseDB のデータを削除(DELETE)
EnterpriseDB のデータの削除には、フィルタクエリと一緒に対象となるレコードをフェッチします。そして、アクティブsession でレコードを削除し、セッションでcommit 関数を呼び出して、該当するレコードの削除を実行します。
deleted_rec = session.query(Orders).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first() session.delete(deleted_rec) session.commit()
EnterpriseDB からPython へのデータ連携には、ぜひCData Python Connector をご利用ください
このようにCData Python Connector と併用することで、270を超えるSaaS、NoSQL データをPython からコーディングなしで扱うことができます。30日の無償評価版が利用できますので、ぜひ自社で使っているクラウドサービスやNoSQL と合わせて活用してみてください。
日本のユーザー向けにCData Python Connector は、UI の日本語化、ドキュメントの日本語化、日本語でのテクニカルサポートを提供しています。