各製品の資料を入手。
詳細はこちら →SQLAlchemy ORM を使って、Python でREST のデータに連携する方法
CData Python Connector を使って、Python アプリケーションおよびスクリプトからSQLAlchemy 経由でREST にOR マッピング可能に。
最終更新日:2023-09-23
この記事で実現できるREST 連携のシナリオ
こんにちは!ウェブ担当の加藤です。マーケ関連のデータ分析や整備もやっています。
Pythonエコシステムには、多くのモジュールがあり、システム構築を素早く効率的に行うことができます。CData Python Connector for REST は、pandas、Matplotlib モジュール、SQLAlchemy ツールキットから使用することで REST にデータ連携するPython アプリケーションを構築し、REST のデータを可視化できます。 本記事では、SQLAlchemy でREST に連携して、データを取得、、更新、挿入、削除 する方法を説明します。
CData Python Connectors の特徴
CData Python Connectors は、以下のような特徴を持った製品です。
- REST をはじめとする、CRM、MA、会計ツールなど多様なカテゴリの270種類以上のSaaS / オンプレデータソースに対応
- Python をはじめとする多様なデータ分析・BI ツールにREST のデータを連携
- ノーコードでの手軽な接続設定
CData Python Connectors では、1.データソースとしてREST の接続を設定、2.Python からPython Connectors との接続を設定、という2つのステップだけでデータソースに接続できます。以下に具体的な設定手順を説明します。
必要なモジュールのインストール
pip でSQLAlchemy ツールキットをインストールします:
pip install sqlalchemy
モジュールのインポートを忘れずに行います:
import sqlalchemy
Python でREST のデータをモデル化
次は、接続文字列で接続を確立します。create_engine 関数を使って、REST のデータに連携するEngne を作成します。
engine = create_engine("rest///?DataModel=Relational&URI=C:/people.xml&Format=XML")
データソースへの認証については、データプロバイダーのヘルプドキュメントの「はじめに」を参照してください: データプロバイダーはREST API を双方向データベーステーブルとして、XML/JSON ファイル(ローカルファイル、一般的なクラウドサービスに保存されているファイル、FTP サーバー)を読み取り専用のビューとしてモデル化します。HTTP Basic、Digest、NTLM、OAuth、FTP などの主要な認証スキームがサポートされています。認証についての詳細は、ヘルプドキュメントの「はじめに」を参照してください。
URI を設定し、認証値を指定したら、Format を"XML" または"JSON" に設定して、データ表現をデータ構造により厳密に一致させるようにDataModel を設定します。
DataModel プロパティは、データをどのようにテーブルに表現するかを制御するプロパティで、以下の基本的な設定を切り替えます。
- Document (デフォルト):REST データのトップレベルのドキュメントビューをモデル化します。データプロバイダーはネストされたエレメントをデータの集計として返します。
- FlattenedDocuments:ネストされたドキュメントとその親を単一テーブルとして暗黙的に結合します。
- Relational:階層データから個々の関連テーブルを返します。テーブルには、親ドキュメントにリンクする主キーと外部キーが含まれます。
リレーショナル表現の構成について詳しくは、「REST データのモデル化」を参照してください。次の例で使用されているサンプルデータもあります。データには、人、所有している車、およびそれらの車で行われたさまざまなメンテナンスサービスのエントリが含まれています。The data includes entries for people, the cars they own, and various maintenance services performed on those cars.
REST のデータのマッピングクラスの宣言
接続を確立したら、OR マッパーでモデル化するテーブルのマッピングクラスを宣言します。本記事では、people テーブルを使います。sqlalchemy.ext.declarative.declarative_base 関数を使って、新しいクラスにフィールド(カラム)を定義します。
base = declarative_base() class people(base): __tablename__ = "people" [ personal.name.first ] = Column(String,primary_key=True) [ personal.name.last ] = Column(String) ...
REST のデータをクエリ
マッピングクラスができたので、セッションオブジェクトを使ってデータソースをクエリすることができます。セッションにEngine をバインドして、セッションのquery メソッドにマッピングクラスを提供します。
query メソッドを使う
engine = create_engine("rest///?DataModel=Relational&URI=C:/people.xml&Format=XML") factory = sessionmaker(bind=engine) session = factory() for instance in session.query(people).filter_by([ personal.name.last ]="Roberts"): print("[ personal.name.first ]: ", instance.[ personal.name.first ]) print("[ personal.name.last ]: ", instance.[ personal.name.last ]) print("---------")
ほかの方法としては、execute メソッドを適切なテーブルオブジェクトに使うことが可能です。以下のコードはアクティブなsession に対して有効です。
execute メソッドを使う
people_table = people.metadata.tables["people"] for instance in session.execute(people_table.select().where(people_table.c.[ personal.name.last ] == "Roberts")): print("[ personal.name.first ]: ", instance.[ personal.name.first ]) print("[ personal.name.last ]: ", instance.[ personal.name.last ]) print("---------")
より複雑なクエリとして、JOIN、集計、Limit などが利用可能です。詳細はヘルプドキュメントをご覧ください。
REST のデータの挿入(INSERT)
REST のデータへの挿入には、マップされたクラスのインスタンスを定義し、アクティブな session に追加します。commit 関数を呼び出して、REST にすべての追加インスタンスを送ります。
new_rec = people([ personal.name.first ]="placeholder", [ personal.name.last ]="Roberts") session.add(new_rec) session.commit()
REST のデータを更新(UPDATE)
REST のデータの更新には、更新するレコードをフィルタクエリとともにフェッチします。そして、フィールドの値を変更し、セッションでcommit 関数を呼んで、REST にレコードを追加します。
updated_rec = session.query(people).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first() updated_rec.[ personal.name.last ] = "Roberts" session.commit()
REST のデータを削除(DELETE)
REST のデータの削除には、フィルタクエリと一緒に対象となるレコードをフェッチします。そして、アクティブsession でレコードを削除し、セッションでcommit 関数を呼び出して、該当するレコードの削除を実行します。
deleted_rec = session.query(people).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first() session.delete(deleted_rec) session.commit()
REST からPython へのデータ連携には、ぜひCData Python Connector をご利用ください
このようにCData Python Connector と併用することで、270を超えるSaaS、NoSQL データをPython からコーディングなしで扱うことができます。30日の無償評価版が利用できますので、ぜひ自社で使っているクラウドサービスやNoSQL と合わせて活用してみてください。
日本のユーザー向けにCData Python Connector は、UI の日本語化、ドキュメントの日本語化、日本語でのテクニカルサポートを提供しています。