SQLAlchemy ORM を使って、Python でDocuSign のデータに連携する方法

CData Python Connector を使って、Python アプリケーションおよびスクリプトからSQLAlchemy 経由でDocuSign にOR マッピング可能に。

加藤龍彦
デジタルマーケティング

最終更新日:2023-09-23

この記事で実現できるDocuSign 連携のシナリオ

こんにちは!ウェブ担当の加藤です。マーケ関連のデータ分析や整備もやっています。

Pythonエコシステムには、多くのモジュールがあり、システム構築を素早く効率的に行うことができます。CData Python Connector for DocuSign は、pandas、Matplotlib モジュール、SQLAlchemy ツールキットから使用することで DocuSign にデータ連携するPython アプリケーションを構築し、DocuSign のデータを可視化できます。 本記事では、SQLAlchemy でDocuSign に連携して、データを取得、、更新、挿入、削除 する方法を説明します。

CData Python Connectors の特徴

CData Python Connectors は、以下のような特徴を持った製品です。

  1. DocuSign をはじめとする、CRM、MA、会計ツールなど多様なカテゴリの270種類以上のSaaS / オンプレデータソースに対応
  2. Python をはじめとする多様なデータ分析・BI ツールにDocuSign のデータを連携
  3. ノーコードでの手軽な接続設定

CData Python Connectors では、1.データソースとしてDocuSign の接続を設定、2.Python からPython Connectors との接続を設定、という2つのステップだけでデータソースに接続できます。以下に具体的な設定手順を説明します。

必要なモジュールのインストール

pip でSQLAlchemy ツールキットをインストールします:

pip install sqlalchemy

モジュールのインポートを忘れずに行います:

import sqlalchemy

Python でDocuSign のデータをモデル化

次は、接続文字列で接続を確立します。create_engine 関数を使って、DocuSign のデータに連携するEngne を作成します。

engine = create_engine("docusign///?OAuthClientId=MyClientId& OAuthClientSecret=MyClientSecret&
CallbackURL=http://localhost:33333&
InitiateOAuth=GETANDREFRESH&OAuthSettingsLocation=/PATH/TO/OAuthSettings.txt")

DocuSign への接続には以下の接続プロパティを設定します:

  • UseSandbox: UseSandbox は現在のユーザーアカウントがサンドボックスかそうでないかを示します。デフォルトはfalse です。サンドボックスアカウントがある場合はTrue に設定します。
  • AccountId (optional): 認証が成功すると自動的に設定されます。 または、複数のAccount Id にアクセスできる場合は、接続文字列で手動で設定できます。アカウントId を取得するには、UserInfo ビューをクエリします。

DocuSign への認証

DocuSign はOAuth 認証標準を利用しています。OAuth を使って認証するには、アプリケーションを作成してOAuthClientId、OAuthClientSecret、およびCallbackURL 接続プロパティを取得しなければなりません。認証方法については、ヘルプドキュメントの「OAuth 認証の使用」を参照してください。

DocuSign のデータのマッピングクラスの宣言

接続を確立したら、OR マッパーでモデル化するテーブルのマッピングクラスを宣言します。本記事では、Documents テーブルを使います。sqlalchemy.ext.declarative.declarative_base 関数を使って、新しいクラスにフィールド(カラム)を定義します。

base = declarative_base()
class Documents(base):
	__tablename__ = "Documents"
	DocumentId = Column(String,primary_key=True)
	DocumentName = Column(String)
	...

DocuSign のデータをクエリ

マッピングクラスができたので、セッションオブジェクトを使ってデータソースをクエリすることができます。セッションにEngine をバインドして、セッションのquery メソッドにマッピングクラスを提供します。

query メソッドを使う

engine = create_engine("docusign///?OAuthClientId=MyClientId& OAuthClientSecret=MyClientSecret&
CallbackURL=http://localhost:33333&
InitiateOAuth=GETANDREFRESH&OAuthSettingsLocation=/PATH/TO/OAuthSettings.txt")
factory = sessionmaker(bind=engine)
session = factory()
for instance in session.query(Documents).filter_by(DocumentName="TPSReport"):
	print("DocumentId: ", instance.DocumentId)
	print("DocumentName: ", instance.DocumentName)
	print("---------")

ほかの方法としては、execute メソッドを適切なテーブルオブジェクトに使うことが可能です。以下のコードはアクティブなsession に対して有効です。

execute メソッドを使う

Documents_table = Documents.metadata.tables["Documents"]
for instance in session.execute(Documents_table.select().where(Documents_table.c.DocumentName == "TPSReport")):
	print("DocumentId: ", instance.DocumentId)
	print("DocumentName: ", instance.DocumentName)
	print("---------")

より複雑なクエリとして、JOIN、集計、Limit などが利用可能です。詳細はヘルプドキュメントをご覧ください。

DocuSign のデータの挿入(INSERT)

DocuSign のデータへの挿入には、マップされたクラスのインスタンスを定義し、アクティブな session に追加します。commit 関数を呼び出して、DocuSign にすべての追加インスタンスを送ります。

new_rec = Documents(DocumentId="placeholder", DocumentName="TPSReport")
session.add(new_rec)
session.commit()

DocuSign のデータを更新(UPDATE)

DocuSign のデータの更新には、更新するレコードをフィルタクエリとともにフェッチします。そして、フィールドの値を変更し、セッションでcommit 関数を呼んで、DocuSign にレコードを追加します。

updated_rec = session.query(Documents).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first()
updated_rec.DocumentName = "TPSReport"
session.commit()

DocuSign のデータを削除(DELETE)

DocuSign のデータの削除には、フィルタクエリと一緒に対象となるレコードをフェッチします。そして、アクティブsession でレコードを削除し、セッションでcommit 関数を呼び出して、該当するレコードの削除を実行します。

deleted_rec = session.query(Documents).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first()
session.delete(deleted_rec)
session.commit()

DocuSign からPython へのデータ連携には、ぜひCData Python Connector をご利用ください

このようにCData Python Connector と併用することで、270を超えるSaaS、NoSQL データをPython からコーディングなしで扱うことができます。30日の無償評価版が利用できますので、ぜひ自社で使っているクラウドサービスやNoSQL と合わせて活用してみてください。

日本のユーザー向けにCData Python Connector は、UI の日本語化、ドキュメントの日本語化、日本語でのテクニカルサポートを提供しています。

関連コンテンツ

トライアル・お問い合わせ

30日間無償トライアルで、CData のリアルタイムデータ連携をフルにお試しいただけます。記事や製品についてのご質問があればお気軽にお問い合わせください。