各製品の資料を入手。
詳細はこちら →SQLAlchemy ORM を使って、Python でSQL Server のデータに連携する方法
CData Python Connector を使って、Python アプリケーションおよびスクリプトからSQLAlchemy 経由でSQL Server にOR マッピング可能に。
最終更新日:2023-09-23
この記事で実現できるSQL Server 連携のシナリオ
こんにちは!ウェブ担当の加藤です。マーケ関連のデータ分析や整備もやっています。
Pythonエコシステムには、多くのモジュールがあり、システム構築を素早く効率的に行うことができます。CData Python Connector for SQL は、pandas、Matplotlib モジュール、SQLAlchemy ツールキットから使用することで SQL Server にデータ連携するPython アプリケーションを構築し、SQL Server のデータを可視化できます。 本記事では、SQLAlchemy でSQL Server に連携して、データを取得、、更新、挿入、削除 する方法を説明します。
CData Python Connectors の特徴
CData Python Connectors は、以下のような特徴を持った製品です。
- SQL Server をはじめとする、CRM、MA、会計ツールなど多様なカテゴリの270種類以上のSaaS / オンプレデータソースに対応
- Python をはじめとする多様なデータ分析・BI ツールにSQL Server のデータを連携
- ノーコードでの手軽な接続設定
CData Python Connectors では、1.データソースとしてSQL Server の接続を設定、2.Python からPython Connectors との接続を設定、という2つのステップだけでデータソースに接続できます。以下に具体的な設定手順を説明します。
必要なモジュールのインストール
pip でSQLAlchemy ツールキットをインストールします:
pip install sqlalchemy
モジュールのインポートを忘れずに行います:
import sqlalchemy
Python でSQL Server のデータをモデル化
次は、接続文字列で接続を確立します。create_engine 関数を使って、SQL Server のデータに連携するEngne を作成します。
engine = create_engine("sql///?User=myUser&Password=myPassword&Database=NorthWind&Server=myServer&Port=1433")
SQL Server 接続プロパティの取得・設定方法
Microsoft SQL Server への接続には以下を入力します。
- Server: SQL Server が稼働するサーバー名。
- User: SQL Server に接続するユーザー名。
- Password: 接続するユーザーのパスワード。
- Database: SQL Server データベース名。
Azure SQL Server およびAzure Data Warehouse への接続
Azure SQL Server およびAzure Data Warehouse には以下の接続プロパティを入力して接続します:
- Server: Azure 上のサーバー。Azure ポータルの「SQL databases」(もしくは「SQL data warehouses」)-> データベースを選択 -> 「Overview」-> 「Server name」で確認が可能です。
- User: Azure に認証するユーザー名。
- Password: 認証するユーザーのパスワード。
- Database: Azure ポータルでSQL databases (or SQL warehouses) ページに表示されるデータベース名。
SQL Server のデータのマッピングクラスの宣言
接続を確立したら、OR マッパーでモデル化するテーブルのマッピングクラスを宣言します。本記事では、Orders テーブルを使います。sqlalchemy.ext.declarative.declarative_base 関数を使って、新しいクラスにフィールド(カラム)を定義します。
base = declarative_base() class Orders(base): __tablename__ = "Orders" ShipName = Column(String,primary_key=True) Freight = Column(String) ...
SQL Server のデータをクエリ
マッピングクラスができたので、セッションオブジェクトを使ってデータソースをクエリすることができます。セッションにEngine をバインドして、セッションのquery メソッドにマッピングクラスを提供します。
query メソッドを使う
engine = create_engine("sql///?User=myUser&Password=myPassword&Database=NorthWind&Server=myServer&Port=1433") factory = sessionmaker(bind=engine) session = factory() for instance in session.query(Orders).filter_by(ShipCountry="USA"): print("ShipName: ", instance.ShipName) print("Freight: ", instance.Freight) print("---------")
ほかの方法としては、execute メソッドを適切なテーブルオブジェクトに使うことが可能です。以下のコードはアクティブなsession に対して有効です。
execute メソッドを使う
Orders_table = Orders.metadata.tables["Orders"] for instance in session.execute(Orders_table.select().where(Orders_table.c.ShipCountry == "USA")): print("ShipName: ", instance.ShipName) print("Freight: ", instance.Freight) print("---------")
より複雑なクエリとして、JOIN、集計、Limit などが利用可能です。詳細はヘルプドキュメントをご覧ください。
SQL Server のデータの挿入(INSERT)
SQL Server のデータへの挿入には、マップされたクラスのインスタンスを定義し、アクティブな session に追加します。commit 関数を呼び出して、SQL Server にすべての追加インスタンスを送ります。
new_rec = Orders(ShipName="placeholder", ShipCountry="USA") session.add(new_rec) session.commit()
SQL Server のデータを更新(UPDATE)
SQL Server のデータの更新には、更新するレコードをフィルタクエリとともにフェッチします。そして、フィールドの値を変更し、セッションでcommit 関数を呼んで、SQL Server にレコードを追加します。
updated_rec = session.query(Orders).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first() updated_rec.ShipCountry = "USA" session.commit()
SQL Server のデータを削除(DELETE)
SQL Server のデータの削除には、フィルタクエリと一緒に対象となるレコードをフェッチします。そして、アクティブsession でレコードを削除し、セッションでcommit 関数を呼び出して、該当するレコードの削除を実行します。
deleted_rec = session.query(Orders).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first() session.delete(deleted_rec) session.commit()
SQL Server からPython へのデータ連携には、ぜひCData Python Connector をご利用ください
このようにCData Python Connector と併用することで、270を超えるSaaS、NoSQL データをPython からコーディングなしで扱うことができます。30日の無償評価版が利用できますので、ぜひ自社で使っているクラウドサービスやNoSQL と合わせて活用してみてください。
日本のユーザー向けにCData Python Connector は、UI の日本語化、ドキュメントの日本語化、日本語でのテクニカルサポートを提供しています。