各製品の資料を入手。
詳細はこちら →SQLAlchemy ORM を使って、Python でAccess のデータに連携する方法
CData Python Connector を使って、Python アプリケーションおよびスクリプトからSQLAlchemy 経由でAccess にOR マッピング可能に。
最終更新日:2023-09-23
この記事で実現できるAccess 連携のシナリオ
こんにちは!ウェブ担当の加藤です。マーケ関連のデータ分析や整備もやっています。
Pythonエコシステムには、多くのモジュールがあり、システム構築を素早く効率的に行うことができます。CData Python Connector for Access は、pandas、Matplotlib モジュール、SQLAlchemy ツールキットから使用することで Access にデータ連携するPython アプリケーションを構築し、Access のデータを可視化できます。 本記事では、SQLAlchemy でAccess に連携して、データを取得、、更新、挿入、削除 する方法を説明します。
CData Python Connectors の特徴
CData Python Connectors は、以下のような特徴を持った製品です。
- Access をはじめとする、CRM、MA、会計ツールなど多様なカテゴリの270種類以上のSaaS / オンプレデータソースに対応
- Python をはじめとする多様なデータ分析・BI ツールにAccess のデータを連携
- ノーコードでの手軽な接続設定
CData Python Connectors では、1.データソースとしてAccess の接続を設定、2.Python からPython Connectors との接続を設定、という2つのステップだけでデータソースに接続できます。以下に具体的な設定手順を説明します。
必要なモジュールのインストール
pip でSQLAlchemy ツールキットをインストールします:
pip install sqlalchemy
モジュールのインポートを忘れずに行います:
import sqlalchemy
Python でAccess のデータをモデル化
次は、接続文字列で接続を確立します。create_engine 関数を使って、Access のデータに連携するEngne を作成します。
engine = create_engine("access///?DataSource=C:/MyDB.accdb")
Access接続の設定方法
ローカルファイルへの接続設定
ローカル環境からAccess への接続は非常にシンプルです。ConnectionType をLocal に設定することで、CRUD 操作(SELECT、INSERT、UPDATE、DELETE)をすべて実行できます。接続にはDataSource プロパティに以下のようなAcces sデータベースファイルのフルパスを指定します。
C:\Users\Public\Documents\MyDatabase.accdb
詳細な接続手順については、ヘルプドキュメントの「はじめに」セクションをご参照ください。
クラウドストレージ上のAccess ファイルへの接続設定
各種クラウドストレージに保存されているAccess ファイルへのアクセスにも対応しています。ただし、クラウド上のファイルに対するデータ操作は、INSERT、UPDATE、DELETE に制限されますのでご注意ください。
S3、Google Driver、OneDrive など、各種クラウドストレージ内のAccess ファイルへの接続方法はこちらの記事をご確認ください。
クラウド上のファイルを更新したい場合は、以下の手順で実施いただけます。
- 対応するCData ドライバーを利用し、クラウドサービスからAccess ファイルをダウンロード
- Access ドライバーを使用して、ローカル環境でファイルを編集
- クラウドサービス用ドライバーのストアドプロシージャを使用して、更新ファイルをアップロード
具体例として、SharePoint 上のファイルを更新する場合の手順をご紹介します。
- CData SharePoint ドライバーのDownloadDocument プロシージャを使用してファイルを取得
- CData Access ドライバーでファイルの更新を実施
- SharePoint ドライバーのUploadDocument プロシージャで更新内容を反映
DataSource 接続プロパティの設定について補足いたします。接続先のクラウドストレージを識別するための一意の接頭辞を指定し、続けて目的のファイルパスまたはフォルダパスを記述します。フォルダを指定した場合は1ファイルが1テーブルとして、単一ファイルの場合は単一テーブルとして扱われます。
Access のデータのマッピングクラスの宣言
接続を確立したら、OR マッパーでモデル化するテーブルのマッピングクラスを宣言します。本記事では、Orders テーブルを使います。sqlalchemy.ext.declarative.declarative_base 関数を使って、新しいクラスにフィールド(カラム)を定義します。
base = declarative_base() class Orders(base): __tablename__ = "Orders" OrderName = Column(String,primary_key=True) Freight = Column(String) ...
Access のデータをクエリ
マッピングクラスができたので、セッションオブジェクトを使ってデータソースをクエリすることができます。セッションにEngine をバインドして、セッションのquery メソッドにマッピングクラスを提供します。
query メソッドを使う
engine = create_engine("access///?DataSource=C:/MyDB.accdb") factory = sessionmaker(bind=engine) session = factory() for instance in session.query(Orders).filter_by(ShipCity="New York"): print("OrderName: ", instance.OrderName) print("Freight: ", instance.Freight) print("---------")
ほかの方法としては、execute メソッドを適切なテーブルオブジェクトに使うことが可能です。以下のコードはアクティブなsession に対して有効です。
execute メソッドを使う
Orders_table = Orders.metadata.tables["Orders"] for instance in session.execute(Orders_table.select().where(Orders_table.c.ShipCity == "New York")): print("OrderName: ", instance.OrderName) print("Freight: ", instance.Freight) print("---------")
より複雑なクエリとして、JOIN、集計、Limit などが利用可能です。詳細はヘルプドキュメントをご覧ください。
Access のデータの挿入(INSERT)
Access のデータへの挿入には、マップされたクラスのインスタンスを定義し、アクティブな session に追加します。commit 関数を呼び出して、Access にすべての追加インスタンスを送ります。
new_rec = Orders(OrderName="placeholder", ShipCity="New York") session.add(new_rec) session.commit()
Access のデータを更新(UPDATE)
Access のデータの更新には、更新するレコードをフィルタクエリとともにフェッチします。そして、フィールドの値を変更し、セッションでcommit 関数を呼んで、Access にレコードを追加します。
updated_rec = session.query(Orders).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first() updated_rec.ShipCity = "New York" session.commit()
Access のデータを削除(DELETE)
Access のデータの削除には、フィルタクエリと一緒に対象となるレコードをフェッチします。そして、アクティブsession でレコードを削除し、セッションでcommit 関数を呼び出して、該当するレコードの削除を実行します。
deleted_rec = session.query(Orders).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first() session.delete(deleted_rec) session.commit()
Access からPython へのデータ連携には、ぜひCData Python Connector をご利用ください
このようにCData Python Connector と併用することで、270を超えるSaaS、NoSQL データをPython からコーディングなしで扱うことができます。30日の無償評価版が利用できますので、ぜひ自社で使っているクラウドサービスやNoSQL と合わせて活用してみてください。
日本のユーザー向けにCData Python Connector は、UI の日本語化、ドキュメントの日本語化、日本語でのテクニカルサポートを提供しています。