SQLAlchemy ORM を使って、Python でAct CRM のデータに連携する方法

CData Python Connector を使って、Python アプリケーションおよびスクリプトからSQLAlchemy 経由でAct CRM にOR マッピング可能に。

加藤龍彦
デジタルマーケティング

最終更新日:2023-09-23

この記事で実現できるAct CRM 連携のシナリオ

こんにちは!ウェブ担当の加藤です。マーケ関連のデータ分析や整備もやっています。

Pythonエコシステムには、多くのモジュールがあり、システム構築を素早く効率的に行うことができます。CData Python Connector for ActCRM は、pandas、Matplotlib モジュール、SQLAlchemy ツールキットから使用することで Act CRM にデータ連携するPython アプリケーションを構築し、Act CRM のデータを可視化できます。 本記事では、SQLAlchemy でAct CRM に連携して、データを取得、、更新、挿入、削除 する方法を説明します。

CData Python Connectors の特徴

CData Python Connectors は、以下のような特徴を持った製品です。

  1. Act CRM をはじめとする、CRM、MA、会計ツールなど多様なカテゴリの270種類以上のSaaS / オンプレデータソースに対応
  2. Python をはじめとする多様なデータ分析・BI ツールにAct CRM のデータを連携
  3. ノーコードでの手軽な接続設定

CData Python Connectors では、1.データソースとしてAct CRM の接続を設定、2.Python からPython Connectors との接続を設定、という2つのステップだけでデータソースに接続できます。以下に具体的な設定手順を説明します。

必要なモジュールのインストール

pip でSQLAlchemy ツールキットをインストールします:

pip install sqlalchemy

モジュールのインポートを忘れずに行います:

import sqlalchemy

Python でAct CRM のデータをモデル化

次は、接続文字列で接続を確立します。create_engine 関数を使って、Act CRM のデータに連携するEngne を作成します。

engine = create_engine("actcrm///?URL=https://myActCRMserver.com&User=myUser&Password=myPassword&ActDatabase=MyDB")

Authentication セクションのUserPassword プロパティに、有効なAct! ユーザー資格情報を設定する必要があります。認証値に加えて、以下も参照してください。

  • Act! Premium への接続

    認証値に加えて、Act! へのURL も設定が必要です。例:https://eup1-iis-04.eu.hosted.act.com/。

    さらに、接続するActDatabase を指定する必要があります。これは、ご自分のアカウントの「About Act! Premium」メニューのページ右上にある「?」で確認することができます。表示されたウィンドウの「Database Name」を使用します。

  • Act! Premium Cloud への接続

    Act! Premium Cloud アカウントに接続するには、ActCloudName プロパティも指定する必要があります。このプロパティはCloud アカウントのURL アドレスで確認できます。例:https://eup1-iis-04.eu.hosted.act.com/ActCloudName/。

ActCRM メタデータの取得は高負荷になる可能性があることに注意してください。CacheMetadata プロパティを設定して、メタデータをローカルに格納することをお勧めします。

Act CRM のデータのマッピングクラスの宣言

接続を確立したら、OR マッパーでモデル化するテーブルのマッピングクラスを宣言します。本記事では、Activities テーブルを使います。sqlalchemy.ext.declarative.declarative_base 関数を使って、新しいクラスにフィールド(カラム)を定義します。

base = declarative_base()
class Activities(base):
	__tablename__ = "Activities"
	ActivityDisplayName = Column(String,primary_key=True)
	Subject = Column(String)
	...

Act CRM のデータをクエリ

マッピングクラスができたので、セッションオブジェクトを使ってデータソースをクエリすることができます。セッションにEngine をバインドして、セッションのquery メソッドにマッピングクラスを提供します。

query メソッドを使う

engine = create_engine("actcrm///?URL=https://myActCRMserver.com&User=myUser&Password=myPassword&ActDatabase=MyDB")
factory = sessionmaker(bind=engine)
session = factory()
for instance in session.query(Activities).filter_by(Subject="Sample subject"):
	print("ActivityDisplayName: ", instance.ActivityDisplayName)
	print("Subject: ", instance.Subject)
	print("---------")

ほかの方法としては、execute メソッドを適切なテーブルオブジェクトに使うことが可能です。以下のコードはアクティブなsession に対して有効です。

execute メソッドを使う

Activities_table = Activities.metadata.tables["Activities"]
for instance in session.execute(Activities_table.select().where(Activities_table.c.Subject == "Sample subject")):
	print("ActivityDisplayName: ", instance.ActivityDisplayName)
	print("Subject: ", instance.Subject)
	print("---------")

より複雑なクエリとして、JOIN、集計、Limit などが利用可能です。詳細はヘルプドキュメントをご覧ください。

Act CRM のデータの挿入(INSERT)

Act CRM のデータへの挿入には、マップされたクラスのインスタンスを定義し、アクティブな session に追加します。commit 関数を呼び出して、Act CRM にすべての追加インスタンスを送ります。

new_rec = Activities(ActivityDisplayName="placeholder", Subject="Sample subject")
session.add(new_rec)
session.commit()

Act CRM のデータを更新(UPDATE)

Act CRM のデータの更新には、更新するレコードをフィルタクエリとともにフェッチします。そして、フィールドの値を変更し、セッションでcommit 関数を呼んで、Act CRM にレコードを追加します。

updated_rec = session.query(Activities).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first()
updated_rec.Subject = "Sample subject"
session.commit()

Act CRM のデータを削除(DELETE)

Act CRM のデータの削除には、フィルタクエリと一緒に対象となるレコードをフェッチします。そして、アクティブsession でレコードを削除し、セッションでcommit 関数を呼び出して、該当するレコードの削除を実行します。

deleted_rec = session.query(Activities).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first()
session.delete(deleted_rec)
session.commit()

Act CRM からPython へのデータ連携には、ぜひCData Python Connector をご利用ください

このようにCData Python Connector と併用することで、270を超えるSaaS、NoSQL データをPython からコーディングなしで扱うことができます。30日の無償評価版が利用できますので、ぜひ自社で使っているクラウドサービスやNoSQL と合わせて活用してみてください。

日本のユーザー向けにCData Python Connector は、UI の日本語化、ドキュメントの日本語化、日本語でのテクニカルサポートを提供しています。

関連コンテンツ

トライアル・お問い合わせ

30日間無償トライアルで、CData のリアルタイムデータ連携をフルにお試しいただけます。記事や製品についてのご質問があればお気軽にお問い合わせください。