各製品の資料を入手。
詳細はこちら →SQLAlchemy ORM を使って、Python でAct-On のデータに連携する方法
CData Python Connector を使って、Python アプリケーションおよびスクリプトからSQLAlchemy 経由でAct-On にOR マッピング可能に。
最終更新日:2023-09-23
この記事で実現できるAct-On 連携のシナリオ
こんにちは!ウェブ担当の加藤です。マーケ関連のデータ分析や整備もやっています。
Pythonエコシステムには、多くのモジュールがあり、システム構築を素早く効率的に行うことができます。CData Python Connector for ActOn は、pandas、Matplotlib モジュール、SQLAlchemy ツールキットから使用することで Act-On にデータ連携するPython アプリケーションを構築し、Act-On のデータを可視化できます。 本記事では、SQLAlchemy でAct-On に連携して、データを取得、、更新、挿入、削除 する方法を説明します。
CData Python Connectors の特徴
CData Python Connectors は、以下のような特徴を持った製品です。
- Act-On をはじめとする、CRM、MA、会計ツールなど多様なカテゴリの270種類以上のSaaS / オンプレデータソースに対応
- Python をはじめとする多様なデータ分析・BI ツールにAct-On のデータを連携
- ノーコードでの手軽な接続設定
CData Python Connectors では、1.データソースとしてAct-On の接続を設定、2.Python からPython Connectors との接続を設定、という2つのステップだけでデータソースに接続できます。以下に具体的な設定手順を説明します。
必要なモジュールのインストール
pip でSQLAlchemy ツールキットをインストールします:
pip install sqlalchemy
モジュールのインポートを忘れずに行います:
import sqlalchemy
Python でAct-On のデータをモデル化
次は、接続文字列で接続を確立します。create_engine 関数を使って、Act-On のデータに連携するEngne を作成します。
engine = create_engine("acton///?InitiateOAuth=GETANDREFRESH&OAuthSettingsLocation=/PATH/TO/OAuthSettings.txt")
ActOn はOAuth 認証標準を利用しています。OAuth を使って認証するには、アプリケーションを作成してOAuthClientId、OAuthClientSecret、およびCallbackURL 接続プロパティを取得する必要があります。
認証方法についての詳細は、ヘルプドキュメントの「認証の使用」を参照してください。
Act-On のデータのマッピングクラスの宣言
接続を確立したら、OR マッパーでモデル化するテーブルのマッピングクラスを宣言します。本記事では、Images テーブルを使います。sqlalchemy.ext.declarative.declarative_base 関数を使って、新しいクラスにフィールド(カラム)を定義します。
base = declarative_base() class Images(base): __tablename__ = "Images" Id = Column(String,primary_key=True) Name = Column(String) ...
Act-On のデータをクエリ
マッピングクラスができたので、セッションオブジェクトを使ってデータソースをクエリすることができます。セッションにEngine をバインドして、セッションのquery メソッドにマッピングクラスを提供します。
query メソッドを使う
engine = create_engine("acton///?InitiateOAuth=GETANDREFRESH&OAuthSettingsLocation=/PATH/TO/OAuthSettings.txt") factory = sessionmaker(bind=engine) session = factory() for instance in session.query(Images).filter_by(FolderName="New Folder"): print("Id: ", instance.Id) print("Name: ", instance.Name) print("---------")
ほかの方法としては、execute メソッドを適切なテーブルオブジェクトに使うことが可能です。以下のコードはアクティブなsession に対して有効です。
execute メソッドを使う
Images_table = Images.metadata.tables["Images"] for instance in session.execute(Images_table.select().where(Images_table.c.FolderName == "New Folder")): print("Id: ", instance.Id) print("Name: ", instance.Name) print("---------")
より複雑なクエリとして、JOIN、集計、Limit などが利用可能です。詳細はヘルプドキュメントをご覧ください。
Act-On のデータの挿入(INSERT)
Act-On のデータへの挿入には、マップされたクラスのインスタンスを定義し、アクティブな session に追加します。commit 関数を呼び出して、Act-On にすべての追加インスタンスを送ります。
new_rec = Images(Id="placeholder", FolderName="New Folder") session.add(new_rec) session.commit()
Act-On のデータを更新(UPDATE)
Act-On のデータの更新には、更新するレコードをフィルタクエリとともにフェッチします。そして、フィールドの値を変更し、セッションでcommit 関数を呼んで、Act-On にレコードを追加します。
updated_rec = session.query(Images).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first() updated_rec.FolderName = "New Folder" session.commit()
Act-On のデータを削除(DELETE)
Act-On のデータの削除には、フィルタクエリと一緒に対象となるレコードをフェッチします。そして、アクティブsession でレコードを削除し、セッションでcommit 関数を呼び出して、該当するレコードの削除を実行します。
deleted_rec = session.query(Images).filter_by(SOME_ID_COLUMN="SOME_ID_VALUE").first() session.delete(deleted_rec) session.commit()
Act-On からPython へのデータ連携には、ぜひCData Python Connector をご利用ください
このようにCData Python Connector と併用することで、270を超えるSaaS、NoSQL データをPython からコーディングなしで扱うことができます。30日の無償評価版が利用できますので、ぜひ自社で使っているクラウドサービスやNoSQL と合わせて活用してみてください。
日本のユーザー向けにCData Python Connector は、UI の日本語化、ドキュメントの日本語化、日本語でのテクニカルサポートを提供しています。